Bilinear biorthogonal expansions and the Dunkl kernel on the real line

نویسندگان

  • L. D. Abreu
  • 'O. Ciaurri
  • J. L. Varona
چکیده

We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we derive sampling and Fourier-Neumann type expansions and an explicit closed formula for the spectrum of a right inverse of the Dunkl operator. This is done by stating the problem in such a way it is possible to use the technique due to Ismail and Zhang. Moreover, we provide a qanalogue of the Fourier-Neumann expansions in q-Bessel functions of the third type. In particular, we obtain a q-linear analogue of Gegenbauer’s expansion of the plane wave by using q-Gegenbauer polynomials defined in terms of little q-Jacobi polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear biorthogonal expansions and the spectrum of an integral operator

We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and FourierNeumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we ...

متن کامل

A q - analogue of the type A Dunkl operator and integral kernel

A q-analogue of the type A Dunkl operator and integral kernel We introduce the q-analogue of the type A Dunkl operators, which are a set of degree–lowering operators on the space of polynomials in n variables. This allows the construction of raising/lowering operators with a simple action on non-symmetric Macdonald polynomials. A bilinear series of non-symmetric Macdonald polynomials is introdu...

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

Dunkl Translation and Uncentered Maximal Operator on the Real Line

On the real line, the Dunkl operators are differential-difference operators introduced in 1989 by Dunkl [1] and are denoted by Λα, where α is a real parameter > −1/2. These operators are associated with the reflection group Z2 on R. The Dunkl kernel Eα is used to define the Dunkl transform α which was introduced by Dunkl in [2]. Rösler in [3] shows that the Dunkl kernels verify a product formul...

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009